Fundamental Matrix Computation: Theory and Practice
نویسندگان
چکیده
We classify and review existing algorithms for computing the fundamental matrix from point correspondences and propose new effective schemes: 7-parameter Levenberg-Marquardt (LM) search, EFNS, and EFNS-based bundle adjustment. Doing experimental comparison, we show that EFNS and the 7-parameter LM search exhibit the best performance and that additional bundle adjustment does not increase the accuracy to any noticeable degree.
منابع مشابه
Periodicity in a System of Differential Equations with Finite Delay
The existence and uniqueness of a periodic solution of the system of differential equations d dt x(t) = A(t)x(t − ) are proved. In particular the Krasnoselskii’s fixed point theorem and the contraction mapping principle are used in the analysis. In addition, the notion of fundamental matrix solution coupled with Floquet theory is also employed.
متن کاملA Block-Wise random sampling approach: Compressed sensing problem
The focus of this paper is to consider the compressed sensing problem. It is stated that the compressed sensing theory, under certain conditions, helps relax the Nyquist sampling theory and takes smaller samples. One of the important tasks in this theory is to carefully design measurement matrix (sampling operator). Most existing methods in the literature attempt to optimize a randomly initiali...
متن کاملComputing the Matrix Geometric Mean of Two HPD Matrices: A Stable Iterative Method
A new iteration scheme for computing the sign of a matrix which has no pure imaginary eigenvalues is presented. Then, by applying a well-known identity in matrix functions theory, an algorithm for computing the geometric mean of two Hermitian positive definite matrices is constructed. Moreover, another efficient algorithm for this purpose is derived free from the computation of principal matrix...
متن کاملRegularization of Supersymmetric Theories — Recent Progress
Regularization is a necessary step in any computation of radiative corrections or quantum effects in quantum field theory. Its purpose is to provide an intermediate definition of otherwise divergent (loop or phase space) integrals. In principle any regularization scheme can be chosen as long as it is consistent with fundamental properties like unitarity and causality. However, in practice a wis...
متن کاملA STABLE COUPLED NEWTON'S ITERATION FOR THE MATRIX INVERSE $P$-TH ROOT
The computation of the inverse roots of matrices arises in evaluating non-symmetriceigenvalue problems, solving nonlinear matrix equations, computing some matrixfunctions, control theory and several other areas of applications. It is possible toapproximate the matrix inverse pth roots by exploiting a specialized version of New-ton's method, but previous researchers have mentioned that some iter...
متن کامل